A familiar walk through the yard, Bean always in tow. |
…the
most curious of the projects by far.
When
we hauled Del Viento in 2011, we did so only to paint the bottom. I also
re-greased the Maxprop. We were back in the water in just a few days.
But
I noticed that during those few days, the concrete beneath our rudder was wet,
all the time. A slow drip from the lower hinge assembly was the source of the
water. I did nothing about this and we launched.
The
notion that our rudder was filled with water bothered me and nagged at me, for
about a month. Then, the discovery of bigger boat problems pushed all thoughts
of our water-logged rudder aside.
In
2012 we hauled again, this time for the express purpose of installing
transducers for our new instruments, out and back in. But a persistent drip
over those 48 hours reminded me that we still had a rudder filled with water.
I
Googled about this and read everything from horror stories of rudder failures
brought on by water intrusion to platitudes seeking to reassure me that all
rudders leak. Accordingly, remedies ranged from rudder replacement to drilling
drain holes and epoxying them up before launch. This year I resolved to cut a
panel out of the side of our rudder to see what’s what.
Maxprop is all greased up and clean. |
Part
of what informed my decision was my understanding that rudders are constructed
with an internal framework comprised of a vertical post (the part that passes
through the hull and which the tiller or wheel rotates) and flat bars welded to
it (perpendicular) that transfer the rotational force of the post at the
leading edge of the rudder to the rudder’s surface area that extends aft, to
the trailing edge. Then this framework is covered in foam that is shaped like
an airfoil. Finally, an outer fiberglass skin is applied over the foam layer.
The
danger I read about with regard to water intrusion is corrosion. If the water
enters the rudder at the difficult-to-seal place where the fiberglass skin
meets the rudder post, then it can be assumed that bond is compromised. And if
that same water corrodes the welds that attach the flat bars to the post, the
rudder can fail such that the post rotates independently of the flat bar, foam,
and outer fiberglass skin assembly.
So
knowing we’d spend a couple weeks hauled out in a hot, dry place and craving
the piece-of-mind I’d gain from seeing what was happening inside, I attached
the cutting wheel to my grinder and went to town. Once I’d cut completely
through the 3/16”-thick skin, it took only a small bit of prying to pull the
cut panel off.
By
this time, I’d read everything I could find about rudder construction and
repair. There, beneath the panel, was foam like I expected, but not the foam I
expected. This was foam from my childhood, that orange-colored 1970s stuff that
is not very dense and turns mealy when you rub it between your fingers. I could
poke my finger into it and leave a hole. And it was saturated so water squeezed
out of it when I did. Only a portion of it was not delaminated from the
fiberglass panel I removed.
I
grabbed a big piece of it and pulled it out. There, halfway to the other side
of the rudder was a thin wall of resin—I’m guessing polyurethane resin. It was
cracked all over and brittle like the sugar melted over crème brulee. I suspect
it was used to bond the two sides of foam, but there were wide gaps between the
two halves.
I
dug deeper, until I reached the other side of the rudder. I removed all the
foam and resin. That’s all there was, no flat bar or webbing to connect all
this to the post.
Where
was the post?
I
dug forward, removing all the foam I could towards the leading edge. It wasn’t
a post I found, but a solid fiberglass wall. The post was seemingly
encapsulated in a cavity immediately aft of the leading edge of the rudder and
it seemed the skin was a part of this seeming exoskeleton.
I
sent pictures to a respected colleague who works for Good Old Boat and
Professional Boatbuilder magazines. He hadn’t seen this before, but asked if he
could publish a picture I sent him, to solicit reader knowledge. That was good,
and I am eager to learn more, but I’m on the hard in the Sonoran desert. It’s
over 100 degrees every day, there are biting ants everywhere, and I’m
struggling to stay hydrated and finish these projects so we can get back in the
water.
Eleanor and Bean. |
So
with the knowledge that the rudder was working fine when I opened it up, and
with a nod to the Japanese craftsmen who constructed it more than 36 years ago,
and with the confidence that I could put it back together at least stronger
than it was, I set to work.
First
I drilled four drain holes near the base of the rudder and let everything sit
in the dry air for two weeks while I attended to other jobs. Then I came back
to the rudder and cleaned everything I’d excavated, vacuuming foam bits from
the crevices and wiping the surfaces down with acetone. I mixed more than two cups
of West System epoxy and poured it slowly into the spaces between the foam
halves and the gap between the skin and the lower section of foam. Then I
pushed thickened epoxy into the vertical gaps I couldn’t pour into, re-bonding
surfaces that appeared to have not been bonded for a long time.
Once
everything was cured, I sprayed nearly a full can of dense, closed-cell
polyurethane foam into the spaces where it could stick and expand and harden
without falling out. Then I epoxy-wetted big areas of the inside surface of the
panel I cut out, pushed it into place, and used scrap lumber, rope, and clamps
to hold it in place, with pressure.
I’d
noted the areas still requiring foam and drilled five holes in the outside of
the rudder to spray through, carefully working the straw up as I sprayed,
filling every crevice until foam oozed out of the seam and holes. Once dry, I
removed the lumber and clamps and used the grinder to expose just over 2.5 inches
of raw fiberglass on either side of my cut, a shallow angle that would allow me
to make a scarf splice-like fiberglass repair.
I
cleaned the entire surface with acetone and then wetted it with epoxy before
wetting and applying 5-inch-wide strips of woven glass over the seam. Then I
built it up with a 2-inch strip, another 5-inch strip, and then coats of
thickened epoxy the next day. Once faired and sanded, the rudder was stronger
than when we hauled and all that was left was bottom paint.
I
still don’t understand the construction—it may be that there are perpendicular
supports attached to the stock down lower, or perhaps this design, as it is, is
perfectly robust—but I am confident it is stronger than when we hauled and will
probably remain so for the next 36 years. I do look forward to hearing any
feedback from the Professional Boatbuilder readership.
We’re
back in the water now, underway with a clean bottom, a rudder
mystery solved, a transmission not threatening to dump all its fluid, and a
mast that will never again interrupt a peaceful night’s slumber. Oh, and even
close-up, Del Viento now gleams, looking prettier than ever.
--MR
If anyone has seen similar construction, I'd love to hear about it. |
Our view for nearly a month--good to be back in the water. |
Launching. Will you look at the reflection on that hull. |
There is a restaurant in a house just outside the yard. Here the girls lounge outside. |
Congrats on your fix for the rudder!
ReplyDeleteThinking of you today - just learned that parking and mass transit subsidy program was eliminated for all but current enrollees in approved plans. To have the transit benefit was something that the IPS team really campaigned to have included. But everything seems to be on the table for cuts these days.
Wakefields are all doing well - having fun at camp, relaxing at the pool, working on proposals, LOL. Tomatoes turning red! Lots of basil! Jalapenos coming along!
Congratulations on a successful haul out! Fingers crossed this is the end of your ruder worries. Sometimes I think builders all add some bizarro never before seen construction methods to every boat to just to keep us on our toes.
ReplyDelete